
Lecture 3: Writers’ aids: Grammatical errors
LING-351 Language Technology and LLMs

Instructor: Hakyung Sung
September 2, 2025
*Acknowledgment: These course slides are based on materials by Lelia Glass @ Georgia Tech (Course: Language & Computers)



Table of contents

1. Grammar

2. Part of Speech (POS)

3. Dependency grammar

4. Grammar checker

1



Review



Spelling checker

Traditional method: Dictionary + Edit Distance

• Relies on a dictionary of correct words, built from a corpus

• Calculates distance between misspelling and candidates (very
simple, but works quite well)

• Suggests the closest candidate as the correction
• Adds some weights for more realistic correction

2



Spelling checker

Traditional method: Dictionary + Edit Distance

• Relies on a dictionary of correct words, built from a corpus
• Calculates distance between misspelling and candidates (very
simple, but works quite well)

• Suggests the closest candidate as the correction
• Adds some weights for more realistic correction

2



Spelling checker

Traditional method: Dictionary + Edit Distance

• Relies on a dictionary of correct words, built from a corpus
• Calculates distance between misspelling and candidates (very
simple, but works quite well)

• Suggests the closest candidate as the correction

• Adds some weights for more realistic correction

2



Spelling checker

Traditional method: Dictionary + Edit Distance

• Relies on a dictionary of correct words, built from a corpus
• Calculates distance between misspelling and candidates (very
simple, but works quite well)

• Suggests the closest candidate as the correction
• Adds some weights for more realistic correction

2



Why context matters in spell-checking

Example: Someone types:

You put the catt before the horse.

• put the cart before the horse
• put the cat before the horse

3



Using N-grams to model context

N-grams are sequences of n elements (e.g., words or characters):

• Unigram = one word: the

• Bigram = two-word sequence: the cat
• Trigram = three-word sequence: put the cat

4



Using N-grams to model context

N-grams are sequences of n elements (e.g., words or characters):

• Unigram = one word: the
• Bigram = two-word sequence: the cat

• Trigram = three-word sequence: put the cat

4



Using N-grams to model context

N-grams are sequences of n elements (e.g., words or characters):

• Unigram = one word: the
• Bigram = two-word sequence: the cat
• Trigram = three-word sequence: put the cat

4



Other approaches

• Statistical Language Models (n-grams) Use probability of
surrounding context e.g., I went to the shcool → “school” is more
probable

• Neural Spell Checkers (Deep Learning) Seq2Seq / Transformer-based
models generate corrected text Examples: ChatGPT, Grammarly, Google
Docs

• Hybrid Approaches Combine edit distance with language models; pick
the highest probability candidate

5



Other approaches

• Statistical Language Models (n-grams) Use probability of
surrounding context e.g., I went to the shcool → “school” is more
probable

• Neural Spell Checkers (Deep Learning) Seq2Seq / Transformer-based
models generate corrected text Examples: ChatGPT, Grammarly, Google
Docs

• Hybrid Approaches Combine edit distance with language models; pick
the highest probability candidate

5



How common are spelling errors?

• About 2–3% of all typed words on a full-size keyboard are
misspelled by proficient adults (Flor et al., 2015)

Figure 1: Flor et al. (2015), p. 112

• On a mobile phone, however, about 40% of words are misspelled
(Grammarly, 2019)

• More multi-error misspellings and real-word errors due to
auto-complete (e.g., restaurant → typed as restuarnt →
auto-corrected to restart)

6



How common are spelling errors?

• About 2–3% of all typed words on a full-size keyboard are
misspelled by proficient adults (Flor et al., 2015)

Figure 1: Flor et al. (2015), p. 112

• On a mobile phone, however, about 40% of words are misspelled
(Grammarly, 2019)

• More multi-error misspellings and real-word errors due to
auto-complete (e.g., restaurant → typed as restuarnt →
auto-corrected to restart)

6



How common are spelling errors?

• About 2–3% of all typed words on a full-size keyboard are
misspelled by proficient adults (Flor et al., 2015)

Figure 1: Flor et al. (2015), p. 112

• On a mobile phone, however, about 40% of words are misspelled
(Grammarly, 2019)

• More multi-error misspellings and real-word errors due to
auto-complete (e.g., restaurant → typed as restuarnt →
auto-corrected to restart)

6



Lesson plan



Lesson plan

• Review
• Grammar

• Part of Speech (POS)
• Dependency Grammar
• Grammar Checker
• Wrap-up

Key idea: Building a grammar checker begins with understanding
key linguistic categories

7



Lesson plan

• Review
• Grammar
• Part of Speech (POS)

• Dependency Grammar
• Grammar Checker
• Wrap-up

Key idea: Building a grammar checker begins with understanding
key linguistic categories

7



Lesson plan

• Review
• Grammar
• Part of Speech (POS)
• Dependency Grammar

• Grammar Checker
• Wrap-up

Key idea: Building a grammar checker begins with understanding
key linguistic categories

7



Lesson plan

• Review
• Grammar
• Part of Speech (POS)
• Dependency Grammar
• Grammar Checker

• Wrap-up

Key idea: Building a grammar checker begins with understanding
key linguistic categories

7



Lesson plan

• Review
• Grammar
• Part of Speech (POS)
• Dependency Grammar
• Grammar Checker
• Wrap-up

Key idea: Building a grammar checker begins with understanding
key linguistic categories

7



Grammar



Two viewpoints on grammar

• Descriptive Grammar Describes how people actually use
language in real life. (Focus: what speakers do)

• Prescriptive Grammar Lays down rules for how language should
be used. (Focus: what speakers ought to do)

8



Two viewpoints on grammar

• Descriptive Grammar Describes how people actually use
language in real life. (Focus: what speakers do)

• Prescriptive Grammar Lays down rules for how language should
be used. (Focus: what speakers ought to do)

8



Examples of grammar in use

• “I ain’t got no books” → Descriptive grammar may accept this
in some English varieties.

• *“Book the read student” → Descriptive grammar rejects this
as ungrammatical (not used by any speaker).

• Prescriptive grammar?

9



Examples of grammar in use

• “I ain’t got no books” → Descriptive grammar may accept this
in some English varieties.

• *“Book the read student” → Descriptive grammar rejects this
as ungrammatical (not used by any speaker).

• Prescriptive grammar?

9



Examples of grammar in use

• “I ain’t got no books” → Descriptive grammar may accept this
in some English varieties.

• *“Book the read student” → Descriptive grammar rejects this
as ungrammatical (not used by any speaker).

• Prescriptive grammar?

9



Grammar checkers and mixed rules

• Commercial grammar checkers may apply both descriptive rules
and prescriptive rules.

Questions (Shared deck)

1. Do you think grammar checkers should allow forms (e.g.,
“gonna”, “ain’t”)? Why or why not?

2. Do prescriptive corrections (e.g., “less people” → “fewer people”;
“He suggested me to go” → “He suggested that I go”) really
improve clarity, or just follow rules?

3. Even without a grammar checker, speakers often recognize
what “sounds right.” How do you think this internal system of
grammar works in your mind?

10



Grammar checkers and mixed rules

• Commercial grammar checkers may apply both descriptive rules
and prescriptive rules.

Questions (Shared deck)

1. Do you think grammar checkers should allow forms (e.g.,
“gonna”, “ain’t”)? Why or why not?

2. Do prescriptive corrections (e.g., “less people” → “fewer people”;
“He suggested me to go” → “He suggested that I go”) really
improve clarity, or just follow rules?

3. Even without a grammar checker, speakers often recognize
what “sounds right.” How do you think this internal system of
grammar works in your mind?

10



Grammar checkers and mixed rules

• Commercial grammar checkers may apply both descriptive rules
and prescriptive rules.

Questions (Shared deck)

1. Do you think grammar checkers should allow forms (e.g.,
“gonna”, “ain’t”)? Why or why not?

2. Do prescriptive corrections (e.g., “less people” → “fewer people”;
“He suggested me to go” → “He suggested that I go”) really
improve clarity, or just follow rules?

3. Even without a grammar checker, speakers often recognize
what “sounds right.” How do you think this internal system of
grammar works in your mind?

10



Linguistics and syntax

• In Linguistics, grammar is often studied under syntax.

• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word
• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?

11



Linguistics and syntax

• In Linguistics, grammar is often studied under syntax.
• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word
• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?

11



Linguistics and syntax

• In Linguistics, grammar is often studied under syntax.
• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word

• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?

11



Linguistics and syntax

• In Linguistics, grammar is often studied under syntax.
• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word
• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?

11



Linguistics and syntax

• In Linguistics, grammar is often studied under syntax.
• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word
• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?

11



Part of Speech (POS)



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.

• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.

• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government

• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe

• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful

• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily

• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into

• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some

• C___: and, or

12



Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories:

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

12



Part-of-Speech (POS)

13



How we identify POS

• Examples:

• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?

• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.

• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?

• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.

• This nony car mooked fast.
• How we identify lexical category?

• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?

• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?

• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?
• What patterns do you see in how these words are used?

• How could these patterns help us decide the POS of a word?
• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?
• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?
• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?
• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:
• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



How we identify POS

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• How we identify lexical category?
• What patterns do you see in how these words are used?
• How could these patterns help us decide the POS of a word?

• We usually identify POS by:
• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

14



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features

• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns

• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s

• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took

• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Traditional NLP

• Part of Speech (POS) as features
• POS tags/frequency used in text classification (e.g., proportion of
nouns, verbs, adjectives)

• POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
• Morphology / Tense as features

• Inflectional endings: -ed, -ing, -s
• Irregular verb forms: go → went, take → took
• Used as binary/frequency features in classifiers

• Before deep learning, POS and morphology were essential
hand-crafted features (based on the prescribed rules).

15



Notes. POS tagging: Current NLP

16



From words to phrases

• Words combine into constituents based on POS:

• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

17



From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase

• play games = verb + noun phrase = verb phrase
• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

17



From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

17



From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

17



From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:
• Noun Phrase + Verb Phrase = Sentence

17



Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”

• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

18



Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

18



Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories

• Grammatically well-formed

• Syntax is about structure, not always meaning.

18



Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

18



Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

18



Phrase structure grammar (Chomsky, 1950s-1960s)

19



Frameworks for analyzing syntax

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar (common in linguistics)
• Dependency Grammar (widely used in NLP)

20



Frameworks for analyzing syntax

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar (common in linguistics)

• Dependency Grammar (widely used in NLP)

20



Frameworks for analyzing syntax

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar (common in linguistics)
• Dependency Grammar (widely used in NLP)

20



Dependency grammar



What is dependency grammar?

Dependency syntax postulates that syntactic structure consists of
relationships between lexical items, normally binary asymmetric
relations (“arrows”) called dependencies.

Sourced from:
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1162/handouts/SLoSP-2014-4-dependencies.pdf

21

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1162/handouts/SLoSP-2014-4-dependencies.pdf


What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:

• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.

• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:

• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:

• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:

• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject

• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object

• det = determiner
• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.

• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)

• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)
• dog → dependent with relation nsubj

• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj

• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det

• . → dependent with relation punct
• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



What is dependency grammar?

• Represents syntax as binary, asymmetric relations between
words.

• One word is the head, and the other is the dependent.
• Unlike phrase structure grammar, it does not group words into
large phrases — it focuses on direct word-to-word links.

• Each dependency relation is typed:
• nsubj = nominal subject
• obj = object
• det = determiner

• Example: The dog chased the cat.
• chased → head verb (ROOT)
• dog → dependent with relation nsubj
• cat → dependent with relation obj
• The → dependent of both nouns with relation det
• . → dependent with relation punct

• Practice: The reindeer played games.

22



Example: The reindeer played games

• the → dependent of reindeer via det

• reindeer → subject of played via nsubj
• games → object of played via obj
• played = root of the sentence

23



Example: The reindeer played games

• the → dependent of reindeer via det
• reindeer → subject of played via nsubj

• games → object of played via obj
• played = root of the sentence

23



Example: The reindeer played games

• the → dependent of reindeer via det
• reindeer → subject of played via nsubj
• games → object of played via obj

• played = root of the sentence

23



Example: The reindeer played games

• the → dependent of reindeer via det
• reindeer → subject of played via nsubj
• games → object of played via obj
• played = root of the sentence

23



Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:

• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:

• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:

• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:

• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:
• Free word-order languages (e.g., Korean, Russian)

• Long-distance dependencies (e.g., What did you eat?)
• Practical impact:

• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:
• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:

• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:
• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:

• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:
• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:
• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Why use dependency grammar?

• Cross-linguistic: works across languages, not tied to a fixed
word order.

• Handles complexity:
• Free word-order languages (e.g., Korean, Russian)
• Long-distance dependencies (e.g., What did you eat?)

• Practical impact:
• Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza,
UDPipe)

• State-of-the-art parsers trained on this format work very
effectively in many languages (https:
//stanfordnlp.github.io/stanza/performance.html)

24

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?

• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?

• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:

• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:
• Enables cross-linguistic comparison

• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:
• Enables cross-linguistic comparison
• Supports language typology research

• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


Universal Dependencies (UD) Project

• A large multilingual corpus annotated in a consistent
dependency format.

• What is UD?
• A framework for consistent annotation of grammar across
languages

• Covers: parts of speech, morphological features, syntactic
dependencies

• Open community effort: 600+ contributors, 200+ treebanks, 150+
languages (https://universaldependencies.org/)

• Why it matters:
• Enables cross-linguistic comparison
• Supports language typology research
• Provides a foundation for multilingual NLP tools

25

https://universaldependencies.org/


More guides

Sourced from: https://people.cs.georgetown.edu/nschneid/p/UD-for-English.pdf

26

https://people.cs.georgetown.edu/nschneid/p/UD-for-English.pdf


Parsing with dependency grammar

• Goal: Automatically generate a tree for a new sentence

• Steps:

1. Tag words with part of speech
2. Assign dependency relations

• Built using machine learning and large annotated corpora

Let’s play: https://demos.explosion.ai/displacy

27

https://demos.explosion.ai/displacy


Parsing with dependency grammar

• Goal: Automatically generate a tree for a new sentence
• Steps:

1. Tag words with part of speech
2. Assign dependency relations

• Built using machine learning and large annotated corpora

Let’s play: https://demos.explosion.ai/displacy

27

https://demos.explosion.ai/displacy


Parsing with dependency grammar

• Goal: Automatically generate a tree for a new sentence
• Steps:

1. Tag words with part of speech

2. Assign dependency relations

• Built using machine learning and large annotated corpora

Let’s play: https://demos.explosion.ai/displacy

27

https://demos.explosion.ai/displacy


Parsing with dependency grammar

• Goal: Automatically generate a tree for a new sentence
• Steps:

1. Tag words with part of speech
2. Assign dependency relations

• Built using machine learning and large annotated corpora

Let’s play: https://demos.explosion.ai/displacy

27

https://demos.explosion.ai/displacy


Parsing with dependency grammar

• Goal: Automatically generate a tree for a new sentence
• Steps:

1. Tag words with part of speech
2. Assign dependency relations

• Built using machine learning and large annotated corpora

Let’s play: https://demos.explosion.ai/displacy

27

https://demos.explosion.ai/displacy


Grammar checker



From grammar to grammar Checkers

• So far, we’ve built a foundation by analyzing sentence structure.
• Now we can apply this knowledge to automatic grammar
checking. For example:

• Try to assign a dependency parse.
• If parsing fails → likely an error.
• If parsing succeeds → compare to known grammar rules.

28



Rule-Based error detection

• Use hand-written rules (based on [descriptive/prescriptive]
grammatical knowledge) to detect common errors.

• Example:

• If the subject (nsubj) is tagged NN (singular noun),
• Then the verb should be tagged VBZ (3rd-person singular).
• The dog swim (X) → should be The dog swims.

29



Rule-Based error detection

• Use hand-written rules (based on [descriptive/prescriptive]
grammatical knowledge) to detect common errors.

• Example:

• If the subject (nsubj) is tagged NN (singular noun),
• Then the verb should be tagged VBZ (3rd-person singular).
• The dog swim (X) → should be The dog swims.

29



Rule-Based error detection

• Use hand-written rules (based on [descriptive/prescriptive]
grammatical knowledge) to detect common errors.

• Example:
• If the subject (nsubj) is tagged NN (singular noun),

• Then the verb should be tagged VBZ (3rd-person singular).
• The dog swim (X) → should be The dog swims.

29



Rule-Based error detection

• Use hand-written rules (based on [descriptive/prescriptive]
grammatical knowledge) to detect common errors.

• Example:
• If the subject (nsubj) is tagged NN (singular noun),
• Then the verb should be tagged VBZ (3rd-person singular).

• The dog swim (X) → should be The dog swims.

29



Rule-Based error detection

• Use hand-written rules (based on [descriptive/prescriptive]
grammatical knowledge) to detect common errors.

• Example:
• If the subject (nsubj) is tagged NN (singular noun),
• Then the verb should be tagged VBZ (3rd-person singular).
• The dog swim (X) → should be The dog swims.

29



What you need to build a grammar checker

• A fast and accurate dependency parser?

• A set of hand-written grammar rules?
• Confusion sets for commonly misused words?
• What else?

30



What you need to build a grammar checker

• A fast and accurate dependency parser?
• A set of hand-written grammar rules?

• Confusion sets for commonly misused words?
• What else?

30



What you need to build a grammar checker

• A fast and accurate dependency parser?
• A set of hand-written grammar rules?
• Confusion sets for commonly misused words?

• What else?

30



What you need to build a grammar checker

• A fast and accurate dependency parser?
• A set of hand-written grammar rules?
• Confusion sets for commonly misused words?
• What else?

30



Rule-Based vs. LLM-Based Grammar Checkers

Rule-Based Checkers
• Use explicit grammar rules
and POS/dependency tags

• Rely on parsing +
handcrafted logic

• Example: Check for
subject–verb agreement via
nsubj and VBZ

• Explainable and
controllable, but less
flexible

LLM-Based Checkers
• Use large neural language
models (e.g., GPT, BERT)

• Learn grammar implicitly
from vast corpora

• Can handle diverse errors
without explicit rules

• Often produce fluent
rewrites, but less
transparent

31



Wrap-up



Wrap-up

• In Linguistics, grammar is often studied under syntax.
• Two key concepts for grammar checkers:

• Part of Speech (POS) – classifies each word
• Dependency grammar – shows how words are connected

• Why this matters for grammar checkers?
• Detect whether words fit together according to rules
• Spot unusual or incorrect structures

32



Updates



Syllabus updated

The syllabus has been updated:

So, bring your laptop on Thursday!

33


	Review
	Lesson plan
	Grammar
	Part of Speech (POS)
	Dependency grammar
	Grammar checker
	Wrap-up
	Updates

