Lecture 3: Writers' aids: Grammatical errors

LING-351 Language Technology and LLMs

Instructor: Hakyung Sung

September 2, 2025

*Acknowledgment: These course slides are based on materials by Lelia Glass @ Georgia Tech (Course: Language & Computers)

Table of contents

1. Grammar

2. Part of Speech (POS)

- 3. Dependency grammar
- 4. Grammar checker

Review

Traditional method: Dictionary + Edit Distance

· Relies on a **dictionary** of correct words, built from a corpus

Traditional method: Dictionary + Edit Distance

- · Relies on a dictionary of correct words, built from a corpus
- Calculates distance between misspelling and candidates (very simple, but works quite well)

Traditional method: Dictionary + Edit Distance

- · Relies on a dictionary of correct words, built from a corpus
- Calculates distance between misspelling and candidates (very simple, but works quite well)
- Suggests the closest candidate as the correction

Traditional method: Dictionary + Edit Distance

- · Relies on a dictionary of correct words, built from a corpus
- Calculates distance between misspelling and candidates (very simple, but works quite well)
- Suggests the closest candidate as the correction
- Adds some weights for more realistic correction

Why context matters in spell-checking

Example: Someone types:

You put the catt before the horse.

- · put the cart before the horse
- · put the cat before the horse

Using N-grams to model context

N-grams are sequences of *n* elements (e.g., words or characters):

• Unigram = one word: the

Using N-grams to model context

N-grams are sequences of *n* elements (e.g., words or characters):

- · Unigram = one word: the
- Bigram = two-word sequence: the cat

Using N-grams to model context

N-grams are sequences of *n* elements (e.g., words or characters):

- · Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

Other approaches

 Statistical Language Models (n-grams) Use probability of surrounding context e.g., I went to the shcool → "school" is more probable

Other approaches

- Statistical Language Models (n-grams) Use probability of surrounding context e.g., I went to the shcool → "school" is more probable
- Neural Spell Checkers (Deep Learning) Seq2Seq / Transformer-based models generate corrected text Examples: ChatGPT, Grammarly, Google Docs
- **Hybrid Approaches** Combine edit distance with language models; pick the highest probability candidate

How common are spelling errors?

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus							
	GRE Argument	GRE Issue	TOEFL Independent	TOEFL Integrated	TOTAL		
Total essays	750	750	750	750	3,000		
Essays without misspellings	60	21	18	21	120		
Total Word Count	263,578	336,301	212,930	151,031	963,840		
Average Word Count	351	448	284	201	321		
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412		
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%		

Figure 1: Flor et al. (2015), p. 112

How common are spelling errors?

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus							
	GRE	GRE	TOEFL	TOEFL	TOTAL		
	Argument	Issue	Independent	Integrated	IOIAL		
Total essays	750	750	750	750	3,000		
Essays without misspellings	60	21	18	21	120		
Total Word Count	263,578	336,301	212,930	151,031	963,840		
Average Word Count	351	448	284	201	321		
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412		
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%		

Figure 1: Flor et al. (2015), p. 112

 On a mobile phone, however, about 40% of words are misspelled (Grammarly, 2019)

How common are spelling errors?

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus							
	GRE	GRE	TOEFL	TOEFL	TOTAL		
	Argument	Issue	Independent	Integrated			
Total essays	750	750	750	750	3,000		
Essays without misspellings	60	21	18	21	120		
Total Word Count	263,578	336,301	212,930	151,031	963,840		
Average Word Count	351	448	284	201	321		
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412		
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%		

Figure 1: Flor et al. (2015), p. 112

- On a mobile phone, however, about 40% of words are misspelled (Grammarly, 2019)
- More multi-error misspellings and real-word errors due to auto-complete (e.g., restaurant → typed as restuarnt → auto-corrected to restart)

- · Review
- Grammar

- · Review
- Grammar
- Part of Speech (POS)

- · Review
- Grammar
- · Part of Speech (POS)
- · Dependency Grammar

- · Review
- Grammar
- · Part of Speech (POS)
- · Dependency Grammar
- · Grammar Checker

- Review
- Grammar
- · Part of Speech (POS)
- Dependency Grammar
- · Grammar Checker
- Wrap-up

Key idea: Building a grammar checker begins with understanding key linguistic categories

Grammar

Two viewpoints on grammar

• **Descriptive Grammar** Describes how people actually use language in real life. (Focus: *what speakers do*)

Two viewpoints on grammar

- **Descriptive Grammar** Describes how people actually use language in real life. (Focus: *what speakers do*)
- Prescriptive Grammar Lays down rules for how language should be used. (Focus: what speakers ought to do)

Examples of grammar in use

 "I ain't got no books" → Descriptive grammar may accept this in some English varieties.

Examples of grammar in use

- "I ain't got no books" → Descriptive grammar may accept this in some English varieties.
- *"Book the read student" → Descriptive grammar rejects this as ungrammatical (not used by any speaker).

Examples of grammar in use

- "I ain't got no books" → Descriptive grammar may accept this in some English varieties.
- *"Book the read student" → Descriptive grammar rejects this as ungrammatical (not used by any speaker).
- Prescriptive grammar?

Grammar checkers and mixed rules

 Commercial grammar checkers may apply both descriptive rules and prescriptive rules.

Questions (Shared deck)

1. Do you think grammar checkers should allow forms (e.g., "gonna", "ain't")? Why or why not?

Grammar checkers and mixed rules

 Commercial grammar checkers may apply both descriptive rules and prescriptive rules.

Questions (Shared deck)

- 1. Do you think grammar checkers should allow forms (e.g., *"gonna"*, *"ain't"*)? Why or why not?
- 2. Do prescriptive corrections (e.g., "less people" → "fewer people"; "He suggested me to go" → "He suggested that I go") really improve clarity, or just follow rules?

Grammar checkers and mixed rules

 Commercial grammar checkers may apply both descriptive rules and prescriptive rules.

Questions (Shared deck)

- 1. Do you think grammar checkers should allow forms (e.g., "gonna", "ain't")? Why or why not?
- 2. Do prescriptive corrections (e.g., "less people" → "fewer people"; "He suggested me to go" → "He suggested that I go") really improve clarity, or just follow rules?
- 3. Even without a grammar checker, speakers often recognize what "sounds right." How do you think this internal system of grammar works in your mind?

 $\boldsymbol{\cdot}$ In Linguistics, grammar is often studied under $\ensuremath{\text{syntax}}.$

- $\boldsymbol{\cdot}$ In Linguistics, grammar is often studied under $\ensuremath{\text{syntax}}.$
- \cdot Two key concepts for grammar checkers:

- In Linguistics, grammar is often studied under syntax.
- Two key concepts for grammar checkers:
 - · Part of Speech (POS) classifies each word

- In Linguistics, grammar is often studied under syntax.
- Two key concepts for grammar checkers:
 - · Part of Speech (POS) classifies each word
 - Dependency grammar shows how words are connected

- In Linguistics, grammar is often studied under syntax.
- Two key concepts for grammar checkers:
 - · Part of Speech (POS) classifies each word
 - · Dependency grammar shows how words are connected
- · Why this matters for grammar checkers?

Part of Speech (POS)

· A word's POS determines how it fits into a sentence.

- · A word's POS determines how it fits into a sentence.
- POS is also called **lexical category**.

- · A word's POS determines how it fits into a sentence.
- POS is also called lexical category.
- Main POS categories:

- · A word's POS determines how it fits into a sentence.
- POS is also called lexical category.
- Main POS categories:
 - N___: reindeer, game, government

- · A word's POS determines how it fits into a sentence.
- POS is also called lexical category.
- · Main POS categories:
 - · N___: reindeer, game, government
 - V___: play, run, believe

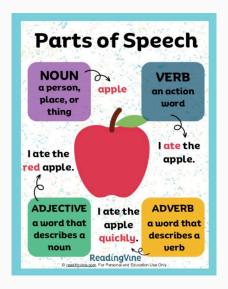
- · A word's POS determines how it fits into a sentence.
- POS is also called **lexical category**.
- Main POS categories:
 - · N___: reindeer, game, government
 - · V___: play, run, believe
 - · A___: fun, beautiful

- · A word's POS determines how it fits into a sentence.
- POS is also called **lexical category**.
- · Main POS categories:
 - · N___: reindeer, game, government
 - · V___: play, run, believe
 - · A___: fun, beautiful
 - · A___: well, heavily

- · A word's POS determines how it fits into a sentence.
- POS is also called **lexical category**.
- · Main POS categories:
 - · N___: reindeer, game, government
 - · V___: play, run, believe
 - · A___: fun, beautiful
 - · A___: well, heavily
 - · P___: on, into

- A word's POS determines how it fits into a sentence.
- POS is also called **lexical category**.
- · Main POS categories:
 - · N___: reindeer, game, government
 - · V___: play, run, believe
 - · A___: fun, beautiful
 - · A___: well, heavily
 - · P___: on, into
 - · A___/D___: a, the, some

- · A word's POS determines how it fits into a sentence.
- POS is also called lexical category.
- · Main POS categories:
 - · N___: reindeer, game, government
 - · V___: play, run, believe
 - · A___: fun, beautiful
 - · A___: well, heavily
 - · P___: on, into
 - · A___/D___: a, the, some
 - · C___: and, or



• Examples:

- Examples:
 - This car is very interesting.

- Examples:
 - · This car is very interesting.
 - This car mooked fast.

- Examples:
 - · This car is very interesting.
 - · This car mooked fast.
 - This nony car mooked fast.

- Examples:
 - · This car is very interesting.
 - This car mooked fast.
 - · This nony car mooked fast.
- · How we identify lexical category?

- Examples:
 - · This car is very interesting.
 - · This car mooked fast.
 - This nony car mooked fast.
- · How we identify lexical category?
 - · What patterns do you see in how these words are used?

- Examples:
 - · This car is very interesting.
 - This car mooked fast.
 - · This nony car mooked fast.
- · How we identify lexical category?
 - · What patterns do you see in how these words are used?
 - · How could these patterns help us decide the POS of a word?

- · Examples:
 - · This car is very interesting.
 - · This car mooked fast.
 - · This nony car mooked fast.
- · How we identify lexical category?
 - · What patterns do you see in how these words are used?
 - How could these patterns help us decide the POS of a word?
- We usually identify POS by:

- · Examples:
 - · This car is very interesting.
 - This car mooked fast.
 - · This nony car mooked fast.
- · How we identify lexical category?
 - · What patterns do you see in how these words are used?
 - · How could these patterns help us decide the POS of a word?
- · We usually identify POS by:
 - **Distribution:** where a word appears in a sentence (e.g., nouns after articles, verbs after subjects)

- · Examples:
 - · This car is very interesting.
 - · This car mooked fast.
 - · This nony car mooked fast.
- · How we identify lexical category?
 - · What patterns do you see in how these words are used?
 - · How could these patterns help us decide the POS of a word?
- · We usually identify POS by:
 - **Distribution:** where a word appears in a sentence (e.g., nouns after articles, verbs after subjects)
 - Morphology: how a word changes form (e.g., verbs mark tense: play → played, sometimes irregularly: go → went)

· Part of Speech (POS) as features

- · Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)

- · Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - POS n-grams (e.g., DET + NOUN + VERB) to capture patterns

- · Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - · POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
- Morphology / Tense as features

- · Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
- Morphology / Tense as features
 - Inflectional endings: -ed, -ing, -s

- Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - · POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
- Morphology / Tense as features
 - · Inflectional endings: -ed, -ing, -s
 - Irregular verb forms: $go \rightarrow went$, $take \rightarrow took$

- Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - · POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
- Morphology / Tense as features
 - · Inflectional endings: -ed, -ing, -s
 - Irregular verb forms: $go \rightarrow went$, $take \rightarrow took$
 - Used as binary/frequency features in classifiers

- · Part of Speech (POS) as features
 - POS tags/frequency used in text classification (e.g., proportion of nouns, verbs, adjectives)
 - · POS n-grams (e.g., DET + NOUN + VERB) to capture patterns
- Morphology / Tense as features
 - Inflectional endings: -ed, -ing, -s
 - Irregular verb forms: $go \rightarrow went$, $take \rightarrow took$
 - Used as binary/frequency features in classifiers
- Before deep learning, POS and morphology were essential hand-crafted features (based on the prescribed rules).

Notes. POS tagging: Current NLP

· Words combine into constituents based on POS:

- · Words combine into constituents based on POS:
 - the reindeer = article + noun = noun phrase

- · Words combine into constituents based on POS:
 - the reindeer = article + noun = noun phrase
 - play games = verb + noun phrase = verb phrase

- · Words combine into constituents based on POS:
 - the reindeer = article + noun = noun phrase
 - play games = verb + noun phrase = verb phrase
- · Constituents combine based on phrasal category:

- · Words combine into constituents based on POS:
 - the reindeer = article + noun = noun phrase
 - play games = verb + noun phrase = verb phrase
- · Constituents combine based on phrasal category:
 - · Noun Phrase + Verb Phrase = Sentence

· Chomsky (1957): "Colorless green ideas sleep furiously"

- · Chomsky (1957): "Colorless green ideas sleep furiously"
- · Nonsensical meaning, but:

- · Chomsky (1957): "Colorless green ideas sleep furiously"
- · Nonsensical meaning, but:
 - Correct lexical and phrasal categories

- · Chomsky (1957): "Colorless green ideas sleep furiously"
- · Nonsensical meaning, but:
 - Correct lexical and phrasal categories
 - Grammatically well-formed

- · Chomsky (1957): "Colorless green ideas sleep furiously"
- · Nonsensical meaning, but:
 - · Correct lexical and phrasal categories
 - · Grammatically well-formed
- · Syntax is about **structure**, not always meaning.

Phrase structure grammar (Chomsky, 1950s-1960s)

Lexicon:

 $N \rightarrow reindeer, dragon, lunch, game, evening, morning$

 $V(trans) \rightarrow play, eat$

 $V(intrans) \rightarrow run, swim, dance$

Adj → fun, beautiful, interesting

Det \rightarrow the, a, some, many

 $P \rightarrow for$, in, to, at

Phrase structure rules:

 $S \rightarrow NP VP$

 $VP \rightarrow V(trans) NP$

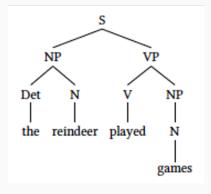
 $VP \rightarrow V(intrans)$

 $NP \rightarrow Det (A^*) N$

 $NP \rightarrow N$

 $NP \rightarrow NP PP$

 $PP \to P \; NP$



Frameworks for analyzing syntax

 Linguists formalize sentence structure using grammar frameworks:

Frameworks for analyzing syntax

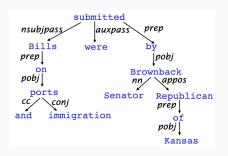
- Linguists formalize sentence structure using grammar frameworks:
 - · Phrase Structure Grammar (common in linguistics)

Frameworks for analyzing syntax

- Linguists formalize sentence structure using grammar frameworks:
 - Phrase Structure Grammar (common in linguistics)
 - Dependency Grammar (widely used in NLP)

Dependency grammar

Dependency syntax postulates that syntactic structure consists of **relationships** between lexical items, normally binary asymmetric relations ("arrows") called **dependencies**.



Sourced from:

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1162/handouts/SLoSP-2014-4-dependencies.pdf

 Represents syntax as binary, asymmetric relations between words.

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)

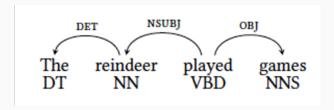
- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)
 - dog → dependent with relation nsubj

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)
 - dog → dependent with relation nsubj
 - · cat → dependent with relation obj

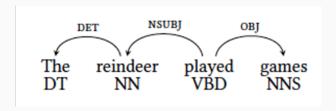
- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)
 - dog → dependent with relation nsubj
 - cat → dependent with relation obj
 - \cdot The \rightarrow dependent of both nouns with relation det

- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)
 - dog → dependent with relation nsubj
 - cat → dependent with relation obj
 - \cdot The \rightarrow dependent of both nouns with relation det
 - · . → dependent with relation punct

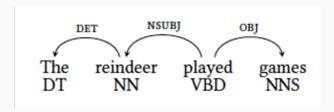
- Represents syntax as binary, asymmetric relations between words.
 - · One word is the **head**, and the other is the **dependent**.
 - Unlike phrase structure grammar, it does not group words into large phrases — it focuses on direct word-to-word links.
- Each dependency relation is **typed**:
 - nsubj = nominal subject
 - \cdot obj = object
 - · det = determiner
- · Example: The dog chased the cat.
 - chased → head verb (ROOT)
 - dog → dependent with relation nsubj
 - cat → dependent with relation obj
 - The → dependent of both nouns with relation det
 - · . → dependent with relation punct
- · Practice: The reindeer played games.



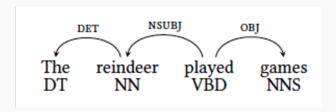
 \cdot the \rightarrow dependent of reindeer via det



- the → dependent of reindeer via det
- \cdot reindeer \rightarrow subject of played via nsubj



- the → dependent of reindeer via det
- reindeer → subject of played via nsubj
- games → object of played via obj



- the → dependent of reindeer via det
- reindeer → subject of played via nsubj
- games → object of played via obj
- played = root of the sentence

• Cross-linguistic: works across languages, not tied to a fixed word order.

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:
 - · Free word-order languages (e.g., Korean, Russian)

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:
 - Free word-order languages (e.g., Korean, Russian)
 - · Long-distance dependencies (e.g., What did you eat?)

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:
 - Free word-order languages (e.g., Korean, Russian)
 - · Long-distance dependencies (e.g., What did you eat?)
- · Practical impact:

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:
 - Free word-order languages (e.g., Korean, Russian)
 - · Long-distance dependencies (e.g., What did you eat?)
- Practical impact:
 - Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza, UDPipe)

- Cross-linguistic: works across languages, not tied to a fixed word order.
- · Handles complexity:
 - Free word-order languages (e.g., Korean, Russian)
 - · Long-distance dependencies (e.g., What did you eat?)
- · Practical impact:
 - Widely adopted in open-source NLP libraries (e.g., spaCy, Stanza, UDPipe)
 - State-of-the-art parsers trained on this format work very effectively in many languages (https:
 - //stanfordnlp.github.io/stanza/performance.html)

• A large multilingual *corpus* annotated in a consistent dependency format.

- A large multilingual *corpus* annotated in a consistent dependency format.
- · What is UD?

- A large multilingual corpus annotated in a consistent dependency format.
- · What is UD?
 - A framework for consistent annotation of grammar across languages

 A large multilingual corpus annotated in a consistent dependency format.

· What is UD?

- A framework for consistent annotation of grammar across languages
- Covers: parts of speech, morphological features, syntactic dependencies

- A large multilingual corpus annotated in a consistent dependency format.
- · What is UD?
 - A framework for consistent annotation of grammar across languages
 - Covers: parts of speech, morphological features, syntactic dependencies
 - Open community effort: 600+ contributors, 200+ treebanks, 150+ languages (https://universaldependencies.org/)

- A large multilingual corpus annotated in a consistent dependency format.
- · What is UD?
 - A framework for consistent annotation of grammar across languages
 - Covers: parts of speech, morphological features, syntactic dependencies
 - Open community effort: 600+ contributors, 200+ treebanks, 150+ languages (https://universaldependencies.org/)
- · Why it matters:

 A large multilingual corpus annotated in a consistent dependency format.

· What is UD?

- A framework for consistent annotation of grammar across languages
- Covers: parts of speech, morphological features, syntactic dependencies
- Open community effort: 600+ contributors, 200+ treebanks, 150+ languages (https://universaldependencies.org/)

· Why it matters:

Enables cross-linguistic comparison

 A large multilingual corpus annotated in a consistent dependency format.

· What is UD?

- A framework for consistent annotation of grammar across languages
- Covers: parts of speech, morphological features, syntactic dependencies
- Open community effort: 600+ contributors, 200+ treebanks, 150+ languages (https://universaldependencies.org/)

· Why it matters:

- · Enables cross-linguistic comparison
- Supports language typology research

 A large multilingual corpus annotated in a consistent dependency format.

· What is UD?

- A framework for consistent annotation of grammar across languages
- Covers: parts of speech, morphological features, syntactic dependencies
- Open community effort: 600+ contributors, 200+ treebanks, 150+ languages (https://universaldependencies.org/)

· Why it matters:

- · Enables cross-linguistic comparison
- Supports language typology research
- Provides a foundation for multilingual NLP tools

More guides

The secret to understanding the design and current success of UD is to realize that the design is a very subtle compromise between approximately 6 things:

- 1. UD needs to be satisfactory on linguistic analysis grounds for **individual** languages.
- UD needs to be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
- 3. UD must be suitable for rapid, consistent **annotation** by a human annotator.
- 4. UD must be suitable for computer **parsing** with high accuracy.
- 5. UD must be easily comprehended and used by a **non-linguist**, whether a language learner or an engineer with prosaic needs for language processing. We refer to this as seeking a habitable design, and it leads us to favor traditional grammar notions and terminology.
- 6. UD must support well downstream language **understanding** tasks (relation extraction, reading comprehension, machine translation, ...).

Sourced from: https://people.cs.georgetown.edu/nschneid/p/UD-for-English.pdf

· Goal: Automatically generate a tree for a new sentence

- · Goal: Automatically generate a tree for a new sentence
- · Steps:

- · Goal: Automatically generate a tree for a new sentence
- · Steps:
 - 1. Tag words with part of speech

- · Goal: Automatically generate a tree for a new sentence
- · Steps:
 - 1. Tag words with part of speech
 - 2. Assign dependency relations

- · Goal: Automatically generate a tree for a new sentence
- · Steps:
 - 1. Tag words with part of speech
 - 2. Assign dependency relations
- · Built using machine learning and large annotated corpora

Grammar checker

From grammar to grammar Checkers

- · So far, we've built a foundation by analyzing sentence structure.
- Now we can apply this knowledge to automatic grammar checking. For example:
- Try to assign a dependency parse.
 - · If parsing fails → likely an error.
 - If parsing succeeds → compare to known grammar rules.

• Use hand-written rules (based on [descriptive/prescriptive] grammatical knowledge) to detect common errors.

- Use hand-written rules (based on [descriptive/prescriptive] grammatical knowledge) to detect common errors.
- Example:

- Use hand-written rules (based on [descriptive/prescriptive] grammatical knowledge) to detect common errors.
- Example:
 - If the subject (nsubj) is tagged NN (singular noun),

- Use hand-written rules (based on [descriptive/prescriptive] grammatical knowledge) to detect common errors.
- · Example:
 - If the subject (nsubj) is tagged NN (singular noun),
 - Then the verb should be tagged VBZ (3rd-person singular).

- Use hand-written rules (based on [descriptive/prescriptive] grammatical knowledge) to detect common errors.
- · Example:
 - · If the subject (nsubj) is tagged NN (singular noun),
 - Then the verb should be tagged VBZ (3rd-person singular).
 - The dog swim (X) \rightarrow should be The dog swims.

• A fast and accurate **dependency parser**?

- A fast and accurate **dependency parser**?
- A set of hand-written grammar rules?

- A fast and accurate **dependency parser**?
- · A set of hand-written grammar rules?
- · Confusion sets for commonly misused words?

- A fast and accurate **dependency parser**?
- · A set of hand-written grammar rules?
- · Confusion sets for commonly misused words?
- · What else?

Rule-Based vs. LLM-Based Grammar Checkers

Rule-Based Checkers

- Use explicit grammar rules and POS/dependency tags
- Rely on parsing + handcrafted logic
- Example: Check for subject-verb agreement via nsubj and VBZ
- Explainable and controllable, but less flexible

LLM-Based Checkers

- Use large neural language models (e.g., GPT, BERT)
- Learn grammar implicitly from vast corpora
- Can handle diverse errors without explicit rules
- Often produce fluent rewrites, but less transparent

Wrap-up

Wrap-up

- In Linguistics, grammar is often studied under syntax.
- Two key concepts for grammar checkers:
 - · Part of Speech (POS) classifies each word
 - Dependency grammar shows how words are connected
- · Why this matters for grammar checkers?
 - · Detect whether words fit together according to rules
 - Spot unusual or incorrect structures

Updates

Syllabus updated

The syllabus has been updated:

2	9/2	Writer's aids: Grammar errors	[LC] Ch.2.5-2.8	
	9/4	Python tutorial 1		Exercise 1
3	9/9	Computer-assisted language learning	[LC] Ch.3	
	9/11	Python tutorial 2		Exercise 2
4	9/16	Text as data		
	9/18	Python tutorial 3		
5	9/23	Word vectors		
	9/25	Python tutorial 4		Exercise 3

So, bring your laptop on Thursday!